当前位置 首页 扶桑镜梦 卷一 初试啼声 第三十四章 三棱镜和萨摩芋煎饼

《扶桑镜梦》卷一 初试啼声 第三十四章 三棱镜和萨摩芋煎饼

作者:MerlinCahrin 字数:3019 书籍:扶桑镜梦

  调所广乡建立的 “三岛方”,严管三个岛上的甘蔗种植和收获,手段严酷,当地岛民称之为“黑糖地狱”。三岛方将砂糖生产份额分配到每家每户,各种规定非常详细,如何种植、如何熬制都有规定,因为份额太高,岛民被迫拼命劳作。一旦岛民犯错就会被施加肉刑,连小孩子吃砂糖都会被惩罚,又因为岛民只能种植甘蔗,粮食全部靠萨摩藩提供,而砂糖只能专卖给三岛方,岛民根本无法从砂糖生产中收益,因此岛民生活困苦不堪。

  大久保利通日后的执政风格有类于此。对此,直秀颇有微词。据说人的思维方式是青少年时期开始养成的,所以直秀对和大久保的交往颇为期待——直秀未经风雨,头脑里将未来掰直的想法颇多。

  大久保一藏看起来身体颇为单薄,沉默寡言,但眼睛非常明亮,给人一种说不出来的感觉,让人不敢小窥。

  直秀拜见了大久保夫人,和一藏互相见礼。之后直秀将和西乡说过的话又复述了一遍,希望一藏也能帮助传达对伊藤先生的道歉。

  “一切交给吉之介就好了”,一藏颇不以为然。

  “好的,看吉之介安排,让一藏陪吉之介一起转达。”,大久保夫人是个很温柔的人。

  扶桑陌生人之间交往时气氛是很拘禁的,说完之后屋敷里沉寂下来,直秀只好提出告辞。

  走之前,直秀问一藏“我要到西乡家教孩子们一点实用的兰学,请问一藏君要不要一起来?”一藏今年才十三岁,好奇心也很重,和母亲打了声招呼就带着妹妹和直秀走了。

  直秀是一个人来拜访大久保家的,三个同伴一大早被他打发去买东西了。到了西乡家,院子里很热闹,一群人围着新运来的石磨嘻嘻哈哈。

  石磨在扶桑早就有了,扶桑的抹茶就是用石磨研磨的。另外和果子很多都是米粉做的,奈良时代开始流行的唐果子─索饼、馎饦、馄饨以及江户时代流行的荞麦面、面条等是用各种面粉做的,只是扶桑以米为主食,农村的麦子等都是以麦饭或麦粥的形式食用的,因此石磨的需求不多。

  另外在江户时代扶桑民间没有驴(当时驴是外来的珍惜动物),牛很珍贵,马主要是军用,而动力机械只有水力机械,主要用作水车,还有极少的一些水力机械用在纺织业做动力,单纯人力使用石磨很辛苦。同时手工做石磨不易,价格不菲。各种原因加起来,导致民间尤其是农村的石磨、碾子数量很少。

  萨摩藩的茶叶产量很大,后世的茶产量仅次于静冈县,位居扶桑全国第二,本地的知览茶很有名气。因为制作抹茶要用石磨,所以鹿儿岛做石磨的石匠比较多,因此村田永敏他们才能在现场买的到。

  虎之助、学次郎在江户枣屋帮忙做过小磨香油,正在指点木工在石磨上搭建一个架子,准备利用杠杆原理做一个吊起来的长木框,推磨的时候好节省人力。

  看到一藏,围在旁边的西乡的弟弟吉二郎和妹妹琴过来招呼,直秀顺手把玻璃三棱镜掏出来,给大家演示色散的现象。

  玻璃三棱镜是从兰国商馆德弗里斯医生给的兰书中找到的,估计是赠送的礼物,当时直秀随手装在行囊里,后来给几个学生讲解《光学》的时候拿出来做演示道具。

  太阳光被三棱镜分解成七色光多有意思啊,直秀给大家演示,老人和孩子们都兴致勃勃地围观,直秀趁机给大家科普光学。

  过了一会,直秀把三棱镜给孩子们自己实践,然后单独和一藏聊起了兰学。

  一藏年纪不到十五岁,还没有进入造士馆学习,所以对兰学了解不多。但家主重豪秉政颇为喜好兰学和兰物,花了不少钱,萨摩藩穷困,很多武士都归咎于重豪,殃及池鱼,下级武士对兰学普遍反感。 一藏父亲说起兰学、兰物时又爱又恨的样子反而激起了他的好奇心。

  直秀给一藏介绍,“兰学不单指兰国人的学问,还包括了整个西洋人的学问。而其中也不免良莠混杂,其中有用的学问,西洋人称之为科学”。

  直秀解释说,西洋人格物致知得到的有用知识就是“科学”,有的兰学书是科学,有的不是。

  伟大的奥匈帝国学者卡尔•波普尔(1902年—1994年)还没出生,直秀只好说某位西洋学者说“一个理论的科学地位的标准是它的可证伪性,或可反驳性, 或可检验性。”也就是科学本身是可验证的、也是可以被反驳的,更是可证伪的。

  这句话给一藏的杀伤力太大了,当时他就懵懂了,“啥,兰学者说有用的知识是可以被验证的,这个我懂;可以被反驳的,这个能被反驳的还能是正确的么?后面还有可以被证伪的,学了兰学然后有一天突然就发现所学的兰学是错的,这都是什么鬼东西?”

  关于波普尔的“可证伪性”到底是什么含义,后世都没有统一思想,何况现在的一个孩子,混乱是必须混乱的,如果大久保不混乱的话,直秀就得赶紧问他一句,“您穿越过来的时候三环的房价涨到多少刀了?”

  波普尔同时指出,“由于一个理论的信息量、精确性和普遍性均与理论的可否证度成正比,因而可否证度就成了衡量科学理论的标准”。

  下面直秀开始给一藏猛灌私货。

  关于可证伪性有两种解释:

  第一种是,可证伪性是说科学结论必须有逻辑上的反例的存在,而“逻辑上的反例”经证实是错的,从而证明了科学结论的正确性。

  第二种是,在承认第一种解释后,可证伪性还可以延伸为“所有的科学结论”最终都会被发现不适用的场景,从而建立起更加完善的科学理论。

  第一种解释的例子很好找,例如“直秀比一藏长得高”,确实,十八岁的直秀现在目测是比十三岁的一藏身材高,第二种解释的例子更简单,“一藏长大后比直秀高”,因此前面的结论“直秀比一藏长得高”可以被证伪——据说大久保成年后身高178CM,直秀还真不一定长得过他。

  听到直秀说他能长高,一藏开心的笑了,这是直秀第一次看到大久保的笑容,终于有了孩子气,不再像个木偶。

  至于“可验证性”,直秀也举了个例子,“直秀比一藏长得高”,我们站在一起不用尺量就能看出高矮,验证“直秀比一藏长得高”。

  “可反驳性”的例子是,对“直秀比一藏长得高”的对立结论是“直秀比一藏长得矮或两人长得一样高”——科学理论必须有对立结论的存在。

  聪明人最“好骗”,因为聪明人会试着按他人的思路思考为什么。一藏觉得自己对兰学有了概念,不再是模模糊糊的印象了,他有点高兴。

  一藏觉得兰学的思考方式很怪异,但也很有趣,他让直秀再举几个兰学的思考方法。直秀就给他讲解了“反证法”和“逆否命题与原命题同真或同否”。

  反证法是一种间接论证的方法,也称“逆证法”,是通过断定与论题相矛盾的判断(即反论题)的虚假来确立论题真实性的论证方法。

  反证法的论证过程是“首先提出论题:然后设定反论题,并依据推理规则进行推演,证明反论题的虚假;最后根据排中律,既然反论题为假,原论题便是真的”。

  反证法在数学中经常被运用,“正难则反”——正面证明不了,那就从反面论证。

  直秀举的例子当然是著名的欧几里德(约前330~约前275)对“素数有无数个”的精彩反正。

  质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

  需要证明“素数有无数个”。

  古希腊数学家欧几里德在他的不朽著作《几何原本》里给出的反证法如下:

  “素数有无数个”的反命题是“素数的数量是有限的”。

  因为“素数的数量是有限的”,所以可以按从小到大列出所有的素数,2,3,…..,n,其中n是最大的素数。

  数m=2×3×5×7×11×……×n+1,m是所有素数相乘再加1得到的数。

  因为所有除了“1”之外的自然数都可以被某个素数整除,而m显然不能被任何素数整除,根据素数的定义,所以m是新的素数。这一结论和“素数的数量是有限的”是矛盾的,因此通过反证法证明了“素数有无数个”。

  一藏听的晕晕乎乎的,因为直秀讲的有很多概念,比如“素数”他就没学过,但他天生聪明,居然也听懂了。听懂了之后,他感觉非常有意思。

  直秀看他懂了,就继续讲“逆否命题与原命题同真或同否”。

  原命题为“若a则b”,那么它的逆否命题为是“若非b,则非a”。在原命题中“a是条件,b是结论”,在逆否命题中“非b是条件,非a是结论”。

  直秀给一藏举了个例子。

  例如原命题是“现在是冬天了,所以天气冷”,条件是“现在是冬天”,结论是“天气冷”,那么原命题的逆否命题是“天气不冷,所以现在不是冬天”。恰好此时临近中午,天气比较暖和,因此直秀说逆否命题不真,那么原命题也不真,“现在是冬天了,所以天气冷”这个认识有错误,应该说“冬天天气经常很冷,今天这个时段恰好也很冷”。

  一藏点头表示明白了。直秀就给一藏讲解如何证明“逆否命题与原命题同真或同否”,不一会大久保就吐了。

  直秀忍着笑,赶紧给大久保倒茶,让他缓一缓再想。

  直秀又返回头给一藏讲“逻辑三段论”——“以一个一般性的原则(大前提)以及一个附属于一般性的原则的特殊化陈述(小前提),由此引申出一个符合一般性原则的特殊化陈述(结论)的过程”。

  正在直秀谈性正浓、一藏昏昏欲吐的时候,一藏的妹妹跑来给了一人一个热乎乎、香喷喷的萨摩芋煎饼,玉子、木鱼花、葱花、味增和甘薯粉混合起来的香气分外诱人,小女孩还让他们赶快去喝好好喝的春雨味增汤。

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
听书
听书
发声
男声 女生 逍遥 软萌 粤语 陕西 台语 辽宁
语速
适中 超快
音量
适中
开始播放
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 回到书页 下一章 > 错误反馈

设为首页加入收藏保存桌面网址发布会员中心留言本

Copyright © 2024-2025 All Rights Reserved